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Abstract-We study crack patterns and effective stress-strain curves in unidirectional fiber-matrix
composites subjected to a uniform out-of-plane shear. The fibers are aligned in the longitudinal
direction and arranged randomly, with no overlap, in the transverse plane. Both fibers and matrix
are isotropic and elastic-britlle. We conduct this analysis numerically using a very fine two-dimen
sional spring network and simulate the crack initiation and propagation by sequentially removing
bonds which exceed a local fracture criterion. In particular, we focus on effects of scale and geometric
randomness in these composites. We consider several "windows of observation" (scales) and study
crack patterns, types of cons titutive responses, and statistics of the corresponding scale dependent
effective elastic stiffness and ;trength of such composites. In the parametric study we cover a wide
range of material combinations defined by the stiffness ratio and the strain-to-failure ratio and we
employ a damage plane in terms of these two parameters to illustrate the results. © 1998 Elsevier
Science Ltd. All rights reserved.

1. INTRODUCTION

Statistical uncertainty in strl~ngth properties of engineering materials has been a known
problem for decades. Some of the earliest studies on the subject date back to the twenties
and thirties, when Weibull (1939) introduced his well known probability fits. However, due
to the complexity of the proJlems and lack of adequate tools, these derivations had to be
based on rather simplistic treatments of mechanics of microstructures with defects; they
relied, basically, on very in:;ightful probabilistic arguments. This situation of statistical
strength theories continued for many decades, while on a parallel, and quite independent
track the fracture mechanic~, made great strides. Fracture mechanics has essentially been
developing as a deterministi: science perfectly suited for treatment of a single crack in a
homogeneous material, rath~r than for analysis of fields of many cracks and failure evol
ution in heterogeneous micmstructures. The lack of adequate tools for treatment of such
problems was sorely felt in damage mechanics, which is characterized by an interplay of
many cracks in disordered materials. The situation has changed over a recent decade due
to the advent of computaticnal mechanics and powerful computers, which now begin to
permit a "brute force" simulation of complex fracture events; these are the tools that were
not available to Weibull and his contemporaries.

As far as the computational fracture mechanics is concerned, two principal methods
are available: finite element:; and spring networks. The second one is borrowed from the
condensed matter physics; it relies on a regular lattice representation of a homogeneous
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continuum, which avoids any mesh generation (preprocessing) that is a problem with finite
elements. This means that heterogeneous media can easily be modeled by assigning the
spring constants all over the lattice according to the local phase properties. The second
major advantage of ~,pring networks is the possibility to create cracks by removing the
spring bonds without any need for remeshing that is often required in simulations of crack
propagation by finite elements. For slow phenomena one simulates the crack evolution in
a quasi-static manner, while for dynamic problems one introduces the inertia forces to turn
the method into a variant of molecular dynamics.

Various studies related to the present one have recently been conducted using similar
tools in the fracture/damage mechanics of composite materials. Several symposia, confer
ences, journal special issues, and books reflect the activity in this area [e.g. Charmet et al.
(1990); Herrmann and Roux (1990; Huet (1993); Bazant et al. (1994); Breysse (1994);
Pyrz (1995); Carpint,~ri (1996); Krajcinovic (1996); Pineau and Zaoui (1996); van Mier
(1996); Ostoja-Starzewski (1997)].

The present paper exploits this spring network method for the analysis of fracture
characteristics of a two-dimensional matrix-inclusion composite with locally isotropic
elastic-brittle phases. We continue the research program begun in (Ostoja-Starzewski et al.
1994a, b) with the main objective of developing a framework of stochastic fracture and
damage mechanics for a class of random composites in which fibers are randomly distributed
in the matrix. More specifically, crack initiation and propagation as well as effective
responses in two-dimensional brittle matrix-fiber composites are studied for the anti-plane
elasticity problem under a uniform shear loading. This problem is equivalent, by virtue of
analogies, to elastic membrane, thermal conductivity, electrical conductivity, etc., since
they are all governed locally by a Laplace's equation. A related problem of in-plane response
has been studied in (Ostoja-Starzewski and Lee, 1996).

We study damage patterns and effective stress--strain responses as a function of several
parameters: mismatch of elastic properties of matrix and inclusions, mismatch of strength
properties of matrix and inclusions, and scale of a test window with which simulations are
being conducted. We display the results in a so-called damage plane, that is a plane of both
mismatch parameters, and we call such results damage maps. Three scales of test windows
are being investigated; they constitute meso-scale statistical continuum approximations of
a random composite. For each of these scales we establish the best probability fits of
random stiffnesses and random strengths.

2. RANDOM COMPOSITE AND ITS SPRING NETWORK REPRESENTATION

2.1. Model ofa random composite
Of concern in tris paper is the anti-plane response of a unidirectional fiber composite

material in the plane transverse to the axis of the fiber alignment. A typical cross-section
of such a composite is shown in Fig. I (a), where two aspects are immediately noted: spatial
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Fig. L (a) A disordered matrix~inclusion composite with inclusions of average diameter d and
periodicity L, showing a periodic window of scale " = Lid; (b) a schematic ofloading of the periodic
window via periodic boundary conditions (2); (cl a fine mesh spring network with local springs is

shown.
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disorder and periodicity on the scale of the window L. The spatial disorder is a feature of
primary interest in this study, and thus, a formalism of random media theory has to be
adopted [e.g. Beran (1968)], in that the specimen of Fig. I (a) is one deterministic realization
B(w) of the random matrix-inclusion composite. The latter is taken as a set B = {B(w);
WEn}, where w is an element of the underlying sample (probability) space n. The w's are
realizations of a planar POiSSO'l point process; each w specifies the centers of all the circular
inclusions in a given window. This Poisson process is subject to a condition of inhibition
in the sense that a new point is accepted providing it does not fall closer than a certain
minimum distance with respel;t to any of the previous ones; this is also called a random
sequential addition (Torquatc, 1988). In order to avoid the problem of arbitrarily narrow
necks between inclusions, we take the distance between the centers of inclusions to be
somewhat greater than the inclusions' diameter d; we return to this issue in Section 2.2.

Our interest is in the eff~:ctive response of the random medium on scales finite with
respect to the inclusion size. Tt.e effective response in such a situation will strongly depend on
the type of boundary conditions. For example, one could consider kinematic (displacement
controlled) boundary conditions which would lead to a stable crack propagation, or force
(stress-controlled) boundary conditions, which would result in an unstable fracture. The
drawback of these two types af conditions lies in the need for an arbitrary interpretation
or modification of the microstructure: (i) either isolate a test window "at random" from a
theoretically infinite disordered composite, which would result in some inclusions being cut
at the window boundaries; or (ii) modify the microstructure in the boundary zone so as to
avoid any such non-physical cutting of the inclusions.

To obviate this issue of boundary effects, we introduce a periodicity on the scale L, as
shown in Fig. I (a). This immediately defines a dimensionless parameter

_ L
0=-

d
(1)

which specifies the length scales of material disorder, and thus, the size of a mesoscale
element, which may be called a statistical volume element (SVE) [see also Jeulin et al.
(1997)]. Let us note that now, the SVE is the random medium Bb = {Bb(w); WEn}.
Appropriate for such a periodic SVE is a strain-controlled periodic boundary condition,
which for the anti-plane response under consideration is written as

u(x+L) = u(x)+so'x

t(x+L) = -t(x) \!xEaBb (2)

where u = U3 (out-of-plane displacement), SO = (S?3' Sg3) is a given constant strain, and
t = (O"l3nJ, 0"23n2) is the surface traction. Also, L = Le with e being a unit vector, and aBb is
the boundary of Bb• Figure 1(b) shows the situation for SO = (s? 3,0), which will henceforth
be the loading case of choice in this paper; thanks to the isotropy of the Poisson point
process of disks' placement no generality is lost. It is important to note that due to the
introduction of periodicity on the length scale L, a relatively weak variability will be
observed for small b compar,~d to what would be obtained under other type of boundary
conditions (kinematic, force, and mixed) ; we study this entire issue in (Alzebdeh et al.,
1998).

Both phases of the composite material are taken to be linear elastic, locally isotropic
and homogeneous; they are described by e:j = eibu and C!J = em bu for the inclusions (i)
and the matrix (m), respectively. Thus, the governing equation of this piecewise-constant
material is

(3)

The boundary condition eqn (2) on any sample composite Bb(w) results in an effective
random stiffness tensor Cb(w), with the constitutive law being stated as
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(4)

The w-dependence in eqn (4) points to a random nature of the resulting stress field and of
the effective stiffness tensor (overbar indicates a volume average), with the fluctuations
disappearing in the limit 15 -> eX). Moreover, eqn (4) is the basis for introducing an effective,
equivalent continuum on the given scale 15, and hence the C,,(w) notation. In this paper we
study three scales 15 = 2.2,4.5 and 9.1 numerically, and determine the corresponding damage
patterns, effective constitutive laws, and the statistics of effective stiffness and strength.

2.2. Spring network discretization
The continuum composite (the transverse plane of a fiber-matrix composite) is dis

cretized using a square spring network [Fig. 1(c)] ; we follow here the approach discussed
in our earlier papers fOstoja-Starzewski et al., 1994a, 1996, 1997). Thus, the stiffness tensor
of a unit cell of this spring network, modeling an isotropic continuum, is given as

(4)

where k is half the bond spring constant. The spring network discretization of the composite
is based on the fact that the inclusion diameters d are several times larger than the lattice
spacing. In fact, we had earlier chosen d to be 14 times the lattice spacing so as to
approximate to within two percent the mean field response of a dilute composite which is
known exactly (Sheng, 1995).

As can be gleaned from Fig. 1(c), the coordinates of Poisson points are rounded off
so as to place the disk centers on the nodes of the spring network. The resolution of
stress and other dep~ndent fields in the narrow necks between the inclusions can only be
approximate and so we force the disks' centers to be at least two lattice spacings apart.
Next, the spring comtants of matrix and inclusion bonds (kID and k) are assigned according
as they fall in a given phase, while any bond straddling the circular matrix-inclusion
boundaries has its spring constant kb assigned according to a series spring system weighted
by the partial lengths (lID and r) of the bond that belong to the respective domains, that is

(5)

The key unknown in the spring network problem is the displacement field u(i,j) over
the window domain. This is, essentially, a linear algebra problem of as many degrees-of
freedom as there are nodes in the network. A solution is accomplished by employing a
conjugate gradient method [e.g. Press et al. (1992)] with respect to the total energy (sum of
energies stored in all the spring bonds) and subject to the boundary condition eqn (2). With
the u(i,j) solution at hand, the total potential energy E stored in the network provides a
basis for determination of the equivalent, effective medium mentioned in connection with
eqn (3), according to the relation

(6)

In eqn (6) V" is the volume ofB,,(w).

2.3. Fracture simulations
One of the principal advantages of spring networks lies in a possibility of simulating

fracture events, such as simultaneous growth of many cracks, through the removal of spring
bonds in accordance with their exceeding local failure criteria, while taking full account of
the resulting stress redistribution throughout the lattice. Given a two-phase composite, two
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Fig. 2. (a) Elastic-brittle stress-strain curves for matrix and inclusion materials; (b) sketch of the

damage plane.

failure criteria are needed in our problem: failure of matrix bonds and failure of inclusion
bonds. We choose to express them in terms of a bond strain

(7)

but it is important to point out that, for an elastic-brittle material, this is fully equivalent
to (i) a criterion in terms of stress (or force) carried by a given bond, or (ii) a criterion in
terms of the energy stored in a given bond.

The failure criterion of lny bond straddling the circular matrix-inclusion boundaries
is assigned as follows: it is weighted by the partial lengths (1m and l') of the bond that
belong to the respective domains, that is

(8)

Now, one of the basic questions is this: given a composite made of two different
elastic-brittle phases, is its effective response also elastic-brittle or not? The spring network
method provides a convenient way to answer this question for a wide range of parameters.
At this stage we note that two other types of responses are also possible: post-peak and
pre-peak depending on whether damage occurs after or prior to the peak <Tmax in the effective
stress-strain curve (Fig. 3).

There are two ways to simulate fracture. The first one proceeds in the following steps:

0max1-------,.

"--------'---....
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0max 1----..,.......

E

~ ~ ~
Fig. 3. Effective stress-!;train curves: (a) elastic-brittle; (b) post-peak; and (c) pre-peak.
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(1) We load the spring network by subjecting it to a small initial strain /;0 under the
periodic boundary condition eqn (2), and solve for the equilibrium state by a conjugate
gradient method.

(2) We next search, under /;0, for any spring in the lattice whose strain exceeds the
local fracture criteria eqn (7). If eqn (7) is not met anywhere, we increment the initial strain
eO, solve for the equilibrium, and check eqn (7) again. The process is being repeated until
eqn (7) is met.

(3) Once eqn (7) is met at some strain en (by the nth increment), the spring is removed
from the network, thus representing an increment of a crack propagation process. The
system must now be re-equilibrated at the given strain en, and condition eqn (7) must be
applied again to all the surviving bonds. Should anyone of those bonds be failing this
check, it needs to be removed, and the network needs to be re-equilibrated again. This
process is continued until no more springs are failing at the given load en. A range of
scenarios is possible here: either just one bond needs to be removed at a given load level,
or a number of them fail, but the system retains some load-carrying capability and can be
strained further, or the bonds need to be removed from the lattice until a crack cuts it
entirely. The latter is a situation of global brittle response.

(4) The process Jf incrementing the strain of condition eqn (2) and checking for local
failures as described in point (3) is being continued until a continuous crack path is formed
through the whole sp,~cimen.

The second way to simulate fracture proceeds in these steps:

(1) Same as step 1 above.
(2) Since the system is linear elastic, we can infer from the current strain levels of all

the bonds which one of them is most likely to fail (i.e. reach e~ or e~r) under an increasing
global strain. We can, therefore, infer this strain directly, and remove this "hottest" bond
immediately without making many small steps.

(3) Same as step (3) above.
(4) Repeat steps (2) and (3) until a continuous crack path is formed through the whole

specImen.

Clearly, the advmtage of this second method is the possibility to avoid applying a
number of strain increments outlined in point (2) of the first method, and this is a chosen
procedure in our stuc.y.

Such a spring network approach to modeling fracture evolution was recently tested in
a much more compkx, in-plane, rather than anti-plane, loading situation (Grah et al.,
1996). This involved fracture of a very thin polycrystalline aluminum sheet made of some
40 crystals, where over 90% agreement of observed and simulated crack patterns was
attained. The advantages of spring network models as opposed to other numerical tech
niques (such as finite elements) hinge on their efficiency to simulate crack formation in
highly complicated systems with a very large number of degrees of freedom. It is noteworthy
that no remeshing of the domain is needed (as in finite elements) nor is it limited to cases
of pre-known basic exact solutions (as in boundary elements).

3. CRACK PATTERNS AND EFFECTIVE STRESS-STRAIN CURVES

3.1. Interpretation in terms ofstrain strengths
All numerical simulations reported in this paper are carried out under a uniform out

of-plane strain eO = (1:7 h 0), using three different window sizes: L = 31,63, 127 lattice units,
and the diameter of inclusions d = 14 units, giving us three scales 15 = L/d = 31/14 ~ 2.2,
15 = 63/14 = 4.5, 15 = 127/14 ~ 9.1, at the same volume (area) fraction of inclusions
f = 35%. Note that the intermediate scale (15 = 4.5) has been studied in Jasiuk et al. (1994)
and Ostoja-Starzewski et al. (1994a, 1997). The above three 15 sizes, in particular 15 = 2.2
and 4.5 define a rather small scale of composite, but they allow a comparatively rapid
simulation of damage.
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As discussed in Section 2 both matrix and inclusions are linear-elastic and brittle, and
their constitutive responses are defined by the stiffnesses C", C and strains-to-failure
s:::, s~r [see Fig. 2(a)]. Thus, in this section we explore the effects of two parameters, the
stiffness ratio C/C" and the srrain-to-failure ratio 8~r/8:::, and study their influence on damage
patterns and effective stress-strain curves for each of the three scales (window sizes) <5 = 2.2,
4.5,9.1. For this purpose, following Ostoja-Starzewski et al. (1997), we employ the damage
plane such that the horizontal axis represents 8~r/8:::, while the vertical axis denotes C/C";
a representation of a given property in this plane we call a damage map. We vary C/C"
and 8~r/8::: as 0.1,1 and 10, which gives us nine cases. A schematic of such a plane is shown
in Fig. 2(b) and it is used in Figs 4-12. The top row corresponds to the case of inclusions
ten times stiffer than the m2.trix, the middle one to the composite with fibers having the
same stiffness as the matrix and the bottom row when inclusions are 10 times more compliant
(softer) than the matrix. Thus, as we move up the plane the stiffness of inclusions increases.
Similarly, as we move from left to right the strain strength of inclusions increases. The left
column denotes the cases when inclusions are 10 times weaker in strain strength than the
matrix, 8~r/8':'r = 0.1 (we refer to this case as weak inclusions case in terms of strains), the
middle column represents the cases when inclusions have the same strain strength as the
matrix, and the right one when inclusions have higher strain strength than the matrix,
8~r/8::: = 10 (we refer to this case as a strong inclusion case in terms of strains). Thus, the
center of the damage plane fi~presents a perfectly homogeneous case in which the stiffnesses
and strengths of both inclUSions and the matrix are identical, while the left bottom corner
represents the case of soft and weak (in terms of strain) inclusions, the right bottom corner
the case of soft and strong inclusions, the left top corner stiff and weak inclusions and the
right top corner stiff and strong inclusions.

The results for three window sizes are shown in Figs 4-12; results for the scale <5 = 2.2
are given in Figs 4-6, for <5 = 4.5 in Figs 7-9, and for <5 = 9.1 in Figs 10--12. Figures 4,7
and 10 give the stress contours fields obtained using ABAQUS, Figs 5, 8 and 11 show crack
patterns obtained by spring networks, and Figs 6, 9 and 12 give effective stress-strain curves
obtained using spring networks.

In Fig. 5 we show a damage map of crack/damage patterns at scale <5 = 2.2 for a single
realization. For each parameter combination we give two crack patterns: the top one
representing the state of a partial damage and the one underneath giving the state of final
crack patterns in a window. The former one, chosen rather arbitrarily, illustrates an early
stage of damage and, thus, gives the information on where cracks initiated. Figure 4 shows
strain contours 8 13/8er in the virgin system of matrix and inclusions, obtained by a finite
element program ABAQUS for the same realization. These strain contours are divided by
strain strengths to il1ustratl~ the locations of maximum relative strains and thus possible
conditions for crack initiation.

Starting with the bottom row where C/C" = 0.1 and the left corner (8~r/8':'r = 0.1) we
have the case of soft and weak inclusions. Thus, it is not surprising that in this case the
cracks initiate in the inclusions (in locations closest to a neighboring inclusion) and there
is a considerable damage in the inclusions before the crack cuts across the matrix. The
strain contours also clearly point to inclusions as "hot spots". A similar response is observed
for the middle case of inclusions ten times softer than the matrix but having identical
strains-to-failure. In fact the locations of crack initiation are the same, but overall there is
less cracking in the inclUSions prior to failure. This smaller amount of damage in the
inclusions is due to the fact that now the matrix experiences higher relative strains and thus
fractures earlier. This is also clearly seen from the strain contour of Fig. 4 for this case. The
right corner of the bottom row in the damage plane is the case of soft and strong inclusions
(in terms of strain), C/C" = 0.1 and 8~rI8':'r = 10, and the cracks initiate in the matrix for
this parameter combination. A glance at the contours of relative strains confirms the fact
that the crack initiation will occur in the matrix.

The middle row in the damage plane represents the case when stiffnesses of inclusions
and the matrix are equal <CIC" = 1); this gives uniform stress fields everywhere in the
material. In addition, when the strain stengths are equal (8~rI8':'r = 1) we have the case of a
homogeneous material with same stiffnesses and strengths throughout. This is a trivial case
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which gives a uniform damage throughout and thus the crack patterns are omitted. When
both constituents have the same stiffness, but e~rle~ = 0.1, i.e. inclusions are weaker than
the matrix, the inclusions crack first, as expected, before the crack propagates across the
matrix. In this case all bonds in the inclusions break simultaneously since the stress field is
uniform. The contouni of relative strains show uniform fields with inclusions being "hot
spots" due to their lower strength. When e~rle~ = 10, i.e. inclusions are stronger than the
matrix in terms of strains, and the stiffnesses are the same, the damage occurs only in the
matrix. In this situation all bonds break simultaneously in the matrix, again, due to a
uniform state of stress. This is also clearly seen from the strain contours which show
uniform fields with matrix having lower relative strain strength.

When Clem = 10 (top row) and e~rle~ = 0.1 (left corner), i.e. inclusions are stiff and
weak in strain, the cr2.cks initiate in the inclusions. Note that again cracks initiate in the
"hot spots" shown by strain contours of Fig. 4. In the case of inclusions 10 times stiffer
than the matrix and e~rle~ ;" 1 cracks initiate and propagate only in the matrix. It is
interesting to note thai: the cases e~rle~ = 1 and 10 give identical crack patterns. This is due
to the fact that damage is matrix dominated.

From both the cr2.ck patterns of Fig. 5 and strain contours of Fig. 4 we can additionally
observe that when inclusions are strong in strains the maximum relative strains occur in
the matrix, and when the inclusions are soft the cracks initiate at locations perpendicular
to the xj-(horizontal) direction, while for the case of stiff inclusions along a line parallel to
XI-axis, when e? 3 is applied. This response is analogous to the in-plane elasticity case when
a composite is subjected to a uniaxial tension in the Xl-direction.

In summary, in the case of soft and weak inclusions (bottom left corner) the cracks
initiate in the inclusi,)ns and in the situation of stiff and strong inclusions (top right
corner) the cracking occurs only in the matrix region, as expected. Also, the results for a
homogeneous materi2J in stiffness agree with intuition. However, the intermediate cases
involving soft and strong or stiff and weak inclusion cases have competing effects and the
results are somewhat less intuitive as they are sensitive to the combination of two parameters
investigated.

We may add at this point that we have chosen as a second parameter the ratio e~rle~.

Alternatively, we could choose the ratio of stress strengths (J~rl(J~ or the ratio of elastic
strain energies U~rl U:~. Had we chosen (J~r/(J~ as the second parameter instead of e~rle~,

then the definition of weak vs strong may be affected. For example, when Clem = 10 and
e~rle~ = 0.1 then (J~rla~ = Ci/Cm

• e~rle~ = 1. Thus, the inclusion 10 times weaker in strain
strength has the same stress strength as the matrix. Therefore, it is weak in terms of the
strain strength, but not the stress strength. Similarly, the case Clem = 0.1 and e~rle~ = 10
gives the stress strength ratio (J~rl(J~ = 1. Therefore, it is strong in terms of the strain
strength, but has the same stress strength as the matrix. Our choice was based on the fact
that in our numerical simulations we expressed the fracture criterion in terms of strain
strengths [eqn (7)] ; this is discussed in more detail in Section 3.2.

Figure 6 gives stress-strain curves in the damage map for the realizations shown in
Figs 4 and 5. Recall that we assumed that both constituents of the composite, the matrix
and inclusions, are elastic-brittle in response. Interestingly, we obtain three distinct types
of macroscopic stress-strain curves: (a) elastic-brittle ; (b) pre-peak (when a "dip" in
stress-strain curve occurs prior to reaching maximum stress strength) ; and (c) post-peak
(when a "dip" in stress-strain curves occurs after the maximum stress strength was reached),
as shown in Fig. 3. This observation about these two additional types of stress-strain
responses was made by Ostoja-Starzewski et ai. (l994a, 1997).

In Fig. 6 we observe the pre-peak response in two cases, Clem = 0.1 and 1, when
e~rle~ = 0.1. For these two parameter combinations there is extensive cracking in inclusions
prior to the final failure. This gives a toughening effect and thus the pre-peak type of
response. Note that the sharp dip in the early portion of the stress-strain curve for the case
Clem = 1, e~rle~ = 0 1corresponds to the point when all inclusions fracture simultaneously
(since the stress is uniform but their strength is lower).

The remaining effective stress-strain curves are of either post-peak or elastic brittle
type. These occur when damage is matrix dominated, i.e. only matrix bonds break. When
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Fig. 5. Crack patterns in the damage plane for scale (j = 31114 = 2.2 for the same realization as in

Fig. 4.

ci/cm = 1, e~r/e~ = 1 as well as 10, we have elastic-brittle response, as expected. A similar
case is true when C/cm = 10, e~r/e~ ~ 1. Note that, clem = 1, e~r/e~ = 1 is the trivial case
of a homogeneous material.

Thus, as we move in the damage plane from the left to the right and from the bottom
to the top, the macroscopic stress-strain responses change from the pre-peak type (due to
the inclusion dominated damage) to post-peak or elastic-brittle types.

Figure 8 gives crack/damage patterns for the intermediate window size b = 4.5. Here,
due to the space constraint we only show the final crack patterns. Note that the damage
patterns display very similar trends as in the b = 2.2 case, but they must differ in local
details due to different geometric arrangements in both windows. Thus, again the cases of
e~r/e~ = 0.1 with clem = 0.1 and 1 show the extensive damage in the inclusions prior to
the final failure (this is expected since inclusions are softer and weaker than the matrix).
The cases clem = 0.1 with e~r/e~ = 10 and C/Cn = 10 with e~rle~ = 0.1 show damage in
both the inclusions and the matrix. These are transitional cases with both matrix inclusions
undergoing cracking due to the competing effects of two parameters. Finally, in the cases
clem = 1, e~r/e~ = 10 and clem = 10, f,~rie~ ~ 1 the damage is solely in the matrix. Also,
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Fig. 6. Effective stress-strain curves in the damage plane for scale Ii = 31/14 = 2.2 for the same
realization as in Fig. 4.

the last two cases havl~ identical crack patterns as in Fig. 5 even though B~r/B~ changed from
1 to 10, this is due to the fact that damage occurs solely in the matrix. Again, the strain
contours given in Fig. 7 confirm the locations of dominant crack patterns.

The macroscopic stress-strain patterns for the realization given in Figs 7-8 are shown
in Fig. 9. The trend is generally similar to that of the smaller window size (Figs 4--6),
although two differences are present: the case C/C" = 0.1 with B~r/B~ = 10 is pre-peak
while C/C" = 10 with B~r/B~ = 0.1 is of elastic-brittle type as opposed to post-peak type
for corresponding ca~:es in Fig. 6. These differences are not only due to a difference in the
window size, but to a fact that configurations on different scales must necessarily be
different. In addition, these two cases are transitional ones with two competing effects, soft
and strong inclusions in a stiff and weak matrix, or vice versa. For example, if we considered
more realizations for the first case, we would find both types of responses as illustrated in
Fig. 16.

Figures I 0-12, r'~presenting the b = 9.1 case, resemble qualitatively the b = 2.2 and
4.5 scales given by Figs 4--6 and 7-9. The crack patterns, shown in Fig. II, obey the same
trends as the two smaller window sizes with the damage patterns changing from being
inclusion dominated as we move from the left to the right and from the bottom to the top
in the damage map. Correspondingly, the stress-strain curves change from pre-peak to
elastic-brittle (or post peak) as we move in the damage planes in those directions, as shown
in Fig. 12. The character of strain pattern in Fig. 10 is very close to that of Fig. 7, showing
the same trends for all parameter combinations; of course, the four times larger number of
disks begins to look like a realistic composite. Also, the cases of high stiffness ratio in the
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top row of Fig. 10 display" trees" of inclusions carrying the load, which are analogous to
trees of grains in a granular matter (Shen et al., 1992), although in the latter case the
stiffness of the matrix phase is zero and the grain-grain contacts are direct.

Finally, it is interesting to note that the largest toughening effect is exhibited by a
composite with soft inclusions with high strain strength (i.e. easily deformable). This
situation may correspond, for example, to a composite having rubber-like (but elastic
brittle) inclusions in an epoxy matrix.

3.2. Interpretation in terms ofstress strengths
All the preceding results were given in terms of the effective stiffness ratio Cjem and

the strain strength ratio f.~rje~;. Classically, however, strength is perceived in terms ofstresses,
and so we can set up a damage plane with Cjem and (T~rj(T~, whereby it is readily established
that (T~rj(T~ = C jCm

• e~rje~. It follows that, in order to cover the range of stress strengths
0.1, 1.0 and 10.0, for Cjem =, 0.1, 1.0 and 10.0, we have to shift the top row of the previously
discussed damage maps by one column to the right and the bottom row by one column to
the left, this corresponds to a "square-rhomb" transformation in going from the e~rje~

parametrization to a (T~r/(T~ parametrization. Thus, two corner cases need to be added:
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Fig. 9. Effective str~ss-strain curves in the damage plane for scale (j = 63/14 = 4.5 for the same
realization as in Fig. 7.

(]'~rj(]'~ = 0.1 for C'jC' = 10.0 in the upper left corner, and (]'~rj(]'~ = 10.0 for C/C" = 0.1 in
the lower right corner.

These newly added corner cases are shown, together with the other ones known from
the preceding section, in a sequence of plots Figs 13-15 for e5 = 9.1. The first of these gives
the state of strain contours normalized by the local critical strain in the given phase,
whereby the warmer the color the closer is the material to its eer' Thus, the yellow/orange
coloring of inclusions in the top left corner indicates that they are closer to failure than the
matrix, which is confirmed by Fig. 14. Indeed, damage occurs in the inclusions and is
finalized by cracks bridging through the matrix. The phenomenon is accompanied by a
plateau of toughening in the effective stress-strain curve of Fig. 15, which is then followed
by a soft modulus slope of the already weakened matrix.

On the other hand, the newly added lower left hand corner case shows an opposite
kind of competition: 1S shown in Fig. 13, strains in the matrix necks between the contiguous
inclusions are highest. Thus, in Fig. 14 we observe a little spatially distributed damage
culminating by a crack percolating through these weakest neck regions. Finally, as Fig. 15
shows, this is accompanied by some pre-peak damage and a considerable range of post
peak damage.

4. STATISTICS OF EFFECTIVE MODULI AND STRENGTHS

The discussion >a far was concerned with the response of a single geometric con
figuration for each of the three window sizes. The next question that we ask is: how will
the stress-strain curves differ as we change the geometric arrangements, but keep identical



Frac:ure of random matrix-inclusion composites 2553

10.0

1.0 _

0.1

0.1 1.0
i
j

m
10.0 E E

Fig. 11. Crack patterns in the damage plane for scale b = 127/14 = 9.1 for the same realization as
in Fig. 10.

volume fractions and parameter combinations? To illustrate this point we show in Fig. 16
the damage map for 8 = 4.5 showing 20 realizations of stress-strain curves. First, we
observe that the scatter is rather small in elf, but considerably larger in Uma, and ema,. The
stress-strain responses obey similar trends as for a single realization. Namely, the cases
c/cm = 0.1, e~r/e~ = 0.1 and 1 have pre-peak type response. The dip in the case of
c/cm = I and e~r!e~ = 0.1 occurs at the same strain for all realizations; this corresponds
to a simultaneous damage in all the inclusions. The cases when c/cm = 10, e~r/e~ = 0.1,
1.0, 10 and c/cm = 1, e~r/e~ = 10 are elastic-brittle (or post-peak responses in just a few
cases), while the cases of Clem = 0.1, e~r/erz; = 1.0, 10 are alternating between pre-peak and
post-peak responses. This illustrates the competing effect of two parameters with both
inclusions and the matrix uniergoing damage processes.

Random scatter in cow:titutive response of a disordered composite, hinted at in the
foregoing discussion, must be accompanied by a common feature: the scale dependence.
Therefore, we now discuss the statistics of two primary quantities of interest, namely elf
and U ma" as functions of 8. In such a study the question to ask is: how many realizations
do we need for each window size? Since it is known that scatter is highest at smallest scales,
that is for 8 = 2.2, we take 1000 realizations for each parameter combination; at 8 = 4.5
we run 100 configurations, while at 8 = 9.1, 40 configurations (see also Table I). The
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Fig. 12. Effective stress-strain curves in the damage plane for scale b = 127/14 = 9.1 for the same
realization as in Fig. 10.

smaller number of realizations B,,(OJ) for larger window size is, of course, a welcome aspect
of the problem given the fact that computational times grow with <5 increasing.

The numbers of samples in Table 1 are also justified by plots of the coefficients of
variation (ratios of the standard deviation to the mean) of ("If and (Jrnax as functions of the
number of realizations n (from 1 to 1000). Selected cases are given in Fig. 17. First, Fig.
l7(a) gives a plot of coefficient of variation (COV) of ("If for a window size <5 = 2.2 vs the
number of realizations n (from 1 to 1000). Note the significant scatter for the number of
realizations in the double digits and its subsequent decay. Similar curves, but for the
maximum strength C'rnax are given in Fig. l7(b) for <5 = 2.2, and in Fig. 17(c) for b = 4.5.
Clearly, a smaller number of realizations is needed for b = 4.5 and n = 100 is quite sufficient
to represent the data as the response exhibits only small order fluctuations when n is close
to 100.

In Tables 2-3 we summarize the effect of two parameters Clem and e~rle~ and the
window size on the nean and the coefficient of variation on ("If and (Jrnax, respectively. The
following observations can be made about ("If. First of all, observe that the statistics of ("If

are not influenced by e~rle~, as expected, that is the results in each row, i.e. for Clem fixed
for e~rle~ = 0.1, 1, 10, are identical for each window size. Secondly, the scatter depends
weakly on parameters Clem and the scatter in ("ll is slightly higher when Clem = 10 than
when Clem = 0.1. When Clem = 1, the effective stiffness is identically a unity and no
scatter exists. Finally, the scatter decreases as the window size increases, i.e. for example
when c;em = 10, the COY is 4.4% for b = 2.2, 1.6% for b = 4.5, and 0.6% for b = 9.1,
and similar values are for Clem = 0.1.
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Similarly, the results for the coefficient of variation of (lmax are given in Table 4. First
of all, when clem = 1 and 6~r/6;'; ~ 1 there is no scatter in responses. This is expected
because in these situations the stress fields are uniform and the whole matrix cracks
simultaneously. However, the scatter in response exists for all the remaining cases, including
the case when clem = 1 and 6~r/6;'; = 0.1. Note that the coefficient of variation of (lmax is
very strongly dependent on clem and 6~r/6;'; and the highest scatter is when clem = 0.1
and 6~r/6;'; = 0.1, i.e. when inclusions are soft and weak (20.2% for b = 2.2 and 13.4% for
b = 4.5).

A similar type of scatter is present in the case clem = 1 and B~r/6;'; = 0.1 (19.1 % for
b = 2.2 and 12.6% for b = 4.5). When clem = 0.1 and 6~r/6;'; is increasing from 0.1,1 to
10, the scatter is decreasing 1S 20.2,14.1 and 8.4% for b = 2.2 and 13.4,9.6 and 4.7% for
(j = 4.5. When clem = 10 the fluctuations are smaller as 6~r/6;'; is changing and now the
case of stiff and strong inclusions gives higher values, i.e. the scatter increases as 6~r/6;';

increases. This is opposite to the response in the bottom row. Thus, as we move in the
damage (parameter) plane in the top row (Clem = 10) scatter increases as we move to the
right, i.e. 6~r/6;'; increases, while in the bottom row (Clem = 0.1) the scatter decreases as
6~r/6;'; increases. If we consider the first column, where 6~r/6~ = 0.1 and clem is changing,
the COY decreases as CIC' increases, whereas for 6~r/6~ = 1 the scatter is higher for the



2556 K. Alzebdeh et al.

0,S<Je-,-----~-........,._,

;'bf~lr~/........ 0.25
l:j 0,"

0.15 /
0.10

0.05

O.OS 0.10 0,1.5 0.20 0.25 0 0.05 0.10 a.IS 0'''''.'0:--;;'0.'''''"-'--:-:!O.30

Ele;;' Ele;;'

0.35

OA5.',--------:>
O.40r

e It.. 030
t).... 0.25

13 0.20

0.15

0.10

O.OS

0.1 0.2 0.3 0.4 0.5 0.6

Ele;;'

10.0

t>.-c 1.0

o 0.1 0.2 0.3 0.4 0.5 06 0.7 o.g 0.9 1.0

ele;;'

/
~'~~---'-"-~~ ~ [j[?l~~

o 0.0$ 0100.15 0.200.250.30 O,lH.400.•S 0"--;,0.7",""0.',....0"".'--;0"".• -;;'0':-'""0.:-,0""',,--;o"','-';!O.9 0 0.1 0.2 0.3 0.4 0.5 0.60.7 0.8 0.9

Ele;;' ele;;' ele;;' , 10~

0.05

0.20

0.1

0.1 1.0 10.0

ai/am

Fig. 15. Effective stress-strain curves in the stress-damage plane for scale b = 127/14 = 9.1 for the
same realization as in Fig. 10.

CIC" = 0.1 case than for CIC" = 10, and finally when e~r/l;;;; = 10 that scatter is higher
when CIC" = 10. FiJally, note that in general the scatter decreases as the window size
increases, similarly m, for efT. This trend holds for all the cases except when J = 2.2 and
CIC" = 10. This may be due to the fact that J = 2.2 is too small and because we use
periodic boundary conditions. However, the correct trend exists as we inspect J = 4.5 and
9.1 window sizes.

The important question to pose now is: what probability distribution function will
give best fit for this data? To address this issue we consider up to 10 possible candidates for
such functions: beta, Gauss, Gumbel Min, Rayleigh, Weibull, X, X2

, etc. (see the Appendix).
We then use a Kolmogorov-Smirnov test and a Chi-square test to determine the top
candidates for each combination of parameters and three window sizes. As might be
expected, the results of these two tests are typically at odds with one another. Moreover,
no single probability jistribution is found to be optimal for the entire range of parameters
in the damage plane. However, the beta function can be proposed as a most universal fit
overall for elf as well as ermax • This is due to two facts: firstly, beta involves four free
parameters as opposed to two or three as is the case with other functions. Secondly, it has
finite limits unlike ober functions, and both quantities are definitely restricted to a finite
range. First, the quality of the beta fit is shown in Fig. 18 for elf on logarithmic plots for
soft and hard disk sy,tems, as a function of three window sizes. Ostoja-Starzewski (1998)
gives a detailed explanation of the usefulness of beta distribution in modeling the flow of
probability mass, as a function ofJ, from two Dirac deltas weighted by the volume fractions
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Fig. 16. Damage map of constitutive curves for 20 realizations of the random composite scale
0= 63/14 = 4.5.

Table I. Three scales and number of realizations simulated

Window size L
Inclusion

diameter d Scale 0 = Lid n

31
63

127

14
14
\4

2.2
4.5
9.\

1000
100
40

of both phases towards a single Dirac delta fixed at elf on a macroscopic scale 0 -+ 00.

Examples of beta in other composite systems are also presented in that reference.
The sequence of plots in Figs 19-21, all set in the damage plane, give analogous fits of

beta for O'max' It is important to note here that the commonly used Weibull distribution did
not give good fits to our data. This is illustrated in Fig. 22 which gives a typical situation
offits by beta, Gumbel Min, Gauss (i.e. normal), and Weibull to data of O'max for a particular
case of clem and B~r/B~ for b = 4.5; other cases display very similar trends. While Weibull
is worst of these four, it is seen that Gumbel Min and Gauss are perhaps acceptable in a
finite range of the data, but beta is best suited for this task. However, given the fact that it
is a four parameter function, beta is really at the limits of its capability of modelling a
problem governed by four principal material parameters: volume fraction of inclusions,
stiffness ratio clem, strength ratio B~r/B~, and window scale O. At the same time, its good
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Fracture of random matrix-inclusion composites

Table 2. Mean and coefficient of variation (COY) of the effective
stiffness elf

C/C" = 0.1 C/C" = 10

Window 0.578 1.723 mean
size 31 0.043 0.044 COY
Window 0.549 1.814 mean
size 63 0.014 0.016 COY
Window 0.554 1.800 mean
size 127 0.006 0.006 COY

Table 3. Mean values of the maximum stress strength O"ma,

Window
s'/sm = 0 I s'/sm = 1 s'/sm = 10 size

C/C" = 10 0.537 0.716 0.716 31
0.478 0.565 0.565 63
0.434 0.491 0.490 127

Clem = 1 0.293 31
0.228 63
0.206 127

C/C" = 0.1 0.291 0.325 0.397 31
0.215 0.260 0.330 63
0.190 0.237 0.308 127

Table 4. Coeffcient of variation of the maximum stress strength O"m.,

Window
s'/sm = 0.1 s;/sm = 1 s;!sm = 10 size

C/C" = 10 0.080 0.084 0.084 31
0.087 0.119 0.119 63
0.056 0.079 0.079 127

CjC" = 1 0.191 31
0.126 63
0.072 127

C!C" = 0.1 0.202 0.141 0.084 31
0.134 0.096 0.047 63
0.102 0.067 0.043 127
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record in reliability theory stands in support of our proposal for its use in a stochastic
damage theory; on the latter subject see (Ostoja-Starzewski et al. 1997).

5. CONCLUSIONS

(1) Spring network modeling of elastic-brittle responses allows one to rapidly inves
tigate a number of different composite configurations, without a need for remeshing as
would be needed with most finite element methods, for a range of various material
parameters. Such numerical :;imulations capture statistical information on geometrical (or
materials) variation with much less effort and cost than would be needed in an experimental
program; experiments should, of course, be done whenever possible. The simulations were
carried out in the setting of periodic boundary conditions for appropriately modified
composite microstructures; however, the same approach may be employed for other types
of loadings.

(2) Two parameters, stiffness ratio Clem and strain strength ratio e~rle':r, define a so
called damage plane, wherein all combinations of three values 0.1, 1.0 and 10 have been
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inspected numerically to cover a wide range of physically encountered composites for a
range of three scales. Three types of effective stress-strain curves have been identified:
elastic-brittle, pre-peak and post-peak. These have been explained in terms of various
microscale phenomena, such as damage of inclusions, matrix cracking, localized vs spatially
distributed damage, etc. Correlations of the damage patterns have been made with the
strain fields of the viJ:gin material. Additionally, damage maps have been developed in
terms of the stress strength ratio (T~r/(T;;;.

(3) Scatter of th,~ effective constitutive responses has been studied in terms of two
quantities: elf and (TrniX' The beta distribution has been identified as an optimal probability
fit for the entire rang~ of parameters studied in this paper. This result may be useful in
setting up of stochastic response laws.

Acknowledgements-This f(:search was supported by the NSF under grants no. MSS 9202772 and MSS 9402285,
as well as the Research for Excellence Fund from the State of Michigan.

REFERENCES

Alzebdeh, K., Jasiuk, I. and Ostoja-Starzewski, M. (1998) Scale and boundary conditions effects in damage
mechanics of random composites. In Symposium on Damage Mechanics, McNU'97 Joint ASME-ASCE-SES
Summer Conference, Damage Mechanics, eds J. W. Ju, J.-L. Chaboche and G. Voyiadjis, Chicago (in press).

Baxevanakis, c., Lebon, B. and Renard, J. (1998) Fracture statistics modeling of laminate composites. Inter
national Journal ofSolids and Structures 35, 2505-2521.

Bazant, Z. P., Bittnar, Z., Jirasek, M. and Mazars, J. (eds) (1994) Fracture and Damage in Quasi-Brittle Disordered
Structures: Experiment, Modelling and Computer Analysis. E & FN Span, London.

Beran, M. (1968) Statistica' Continuum Theories. Interscience, New York.
Breysse, D. (ed.) (1994) Probabilities and Materials-Tests, Models and Applications. NATO ASI Series E-269,

Kluwer, Dordrecht.
Carpinteri, A. (ed.) (1996) Size-Scale Effects in the Failure Mechanisms of Materials and Structures. E & FN

Spon, London.
Charmet, J. c., Roux, S. and Guyon, E. (eds) (1990) Disorder and Fracture. NATO ASI Series B-235, Plenum

Press, New York.
Grah, M., Alzebdeh, K., Sheng, P. Y., Vaudin, M. D., Bowman, K. J. and Ostoja-Starzewski, M. (1996) Brittle

intergranular failure in 2D microstructures: experiments and computer simulations. Acta Materialia 44(10),
4003-4018.



Fractllfe of random matrix-inclusion composites 2565

Herrmann, H. J. and Roux, S. (eds) (1990) Statistical Models for the Fracture of Disordered Media. Elsevier,
, North-Holland.
Huet, C. (1993) Micromechanics of Cmcrete and Cementitious Composites. Presses Polytech. Univers, Romandes,

Lausanne.
Jasiuk, I., Sheng, P. Y. and Ostoja-Starzewski, M. (1994) Influence of random fiber arrangement on crack

propagation in brittle-matrix composites. 4th Conference Brittle-Matrix Composites, eds A. M. Brandt, V. C.
Li and I. H. Marshall. Warsaw, Pcland. pp. 200-208.

Krajcinovic, D. (1996) Damage Mechanics. Elsevier, North-Holland.
Ostoja-Starzewski, M. (ed.) (1997) Statistical fracture mechanics. Engineering Fracture Mechanics 57(2/3), 58(5/6).
Ostoja-Starzewski, M. (1998) Random field models of heterogeneous materials. International Journal of Solids

and Structures 35, 2429-2455.
Ostoja-Starzewski, M. and Lee, J. D. (1996) Damage maps of disordered composites: a spring network approach.

International Journal ofFracture 7~;, R51-R57.
Ostoja-Starzewski, M., Sheng, P. Y. and Jasiuk, I. (1994a) Influence of random geometry on effective properties

and damage formation in composite materials. ASME Journal of Engineering Materials and Technology 116,
384-391.

Ostoja-Starzewski, M., Sheng, P. Y. and Jasiuk, I. (l994b) Micromechanics as a basis of stochastic continuum
damage mechanics, 1994 ASME Winter Ann. Mtg. In Material Instabilities: Theory and Applications, eds R.
C. Batra and H. M. Zbib, AMD 183 and MD 50, 131-141.

Ostoja-Starzewski, M., Sheng, P. Y. and Alzebdeh, K. (1996) Spring network models in elasticity and fracture of
composites and polycrystals. ComJ?utational Material Science 7(1,2),82-93.

Ostoja-Starzewski, M., Sheng, P. Y. and Jasiuk, I. (1997) Damage patterns and constitutive response of random
matrix-inclusion composites. Engmeering Fracture Mechanics 58, 581-606.

Pineau, A. and Zaoui, A. (eds) (1996) Micromechanics of Plasticity and Damage ofMultiphase Materials. Kluwer,
Dordrecht.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992) Numerical Recipies. Cambridge
University Press, Cambridge.

Pyrz, R. (ed.) (1995) IUTAM Sympo,lium on Microstructure-Property Interactions in Composite Materials. Kluwer,
Dordrecht.

Shen, H. H., Satake, M., Mehrabadi, M., Chang, C. S., Campbell, C. S. (eds) (1992) Advances in micromechanics
of granular materials. Stud. Applied Mechanics 31.

Sheng, P. Y. (1995) Analytical and computational approaches in mechanics of composite materials. Ph.D. thesis,
Michigan State University.

Torquato, S. (1988) Computer simulation results for the two-point probability function of composite media.
Journal of Composite Physics 76(1), 176-191.

van Mier, J. G. M. (1996) Fracture Processes ofConcrete: Assessment of Material Parametersfor Fracture Models.
CRC Press, Boca Raton.

Weibull, W. (1939) A statistical theory of the strength of materials. Swedish Royal Institute ofEngineering Research
151, 1-45.

APPENDIX

For the sake of reference we list here the probability distributions considered in the present study.

Beta

(AI)

where ai, a2, "1 and "2 are adjustable parameters, and B(a" a,) = r(x)r(y)/(r(x,y) is the beta function.

Gauss (normal)

(A2)

where Jl and (J are adjustable parameters.

Gumbel Min

(A3)

where Jl and IX are adjustable parameters.
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Rayleigh

where (X and B are adjustable parameters.

Weibull
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(
X-B) I(X-')'

f(X;~,B) = -- e-,7
(x'

(A4)

where /1, K and B are adjustable parameters.

Chi X

where~, /3, and B are adjustable parameters.

Chi-Square X'

x (x-,)
(X-B)'-' e- 2"""

f(X;~,B) = -2- -(IX)
2r .2

where IX and Bare adjustable parameters.

(AS)

(A6)

(A7)


